

Constraints on the Intergalactic Magnetic Field from Gamma-Ray Observations of Blazars

Justin Finke
US Naval Research
Laboratory
for the Fermi-LAT
Collaboration
arXiv:1510.02485

Collaborators/co-authors

Luis Reyes, Kaeleigh Reynolds (Cal Poly)

Markos Georganopoulos, Kevin McCann (UMBC)

Marco Ajello (Clemson)

Steve Fegan (Ecole Polytechnique, France)

paper accepted by ApJ (Oct. 8th), arXiv:1510.02485

Intergalactic Magnetic Field

Two broad categories for generating IGMF:

Astrophysical: Motion of plasma from outflows from first stars, AGN, or galaxies separates electrons and protons, which creates electric and magnetic fields.

Result: IGMF only in galaxy clusters, along filaments, or where matter is found.

Cosmological: Plasma motion in early universe, during phase transitions or era of inflation

Results: IGMF throughout universe, including in voids.

e.g., Neronov & Semikov (2009, Phys Rev D, 80, 123012)

EBL pair cascade

No Intergalactic Magnetic Field

GeV γ-rays delayed due to slower e+e- speed

Non-zero Intergalactic Magnetic Field

The gamma rays originate at the source.

We assume this is the case . . .

The gamma-ray spectrum is not curved upwards.

We assume the γ-ray spectrum has this shape . . .

... and not this shape.

1ES 0229+200 Aliu et al. (2014), ApJ, 782, 13

We assume the source variability is minimal

We assume photons don't convert to axions (e.g., Sanchez-Conde et al. 2009)

We assume plasma beam instabilities are not important (e.g., Broderick et al. 2012)

Rule out low B fields

- If B-field is *low*, cascade will be *large*.
- Cascade can't be above observed LAT flux

Georganopoulos, JF, & Reyes (2010), ApJ, 714, 157

Rule out High B fields

- If B-field is *high*, cascade will be *small*.
- If deabsorbed TeV points are above extrapolated LAT spectrum, the model is ruled out unless the cascade is significant fraction of the LAT flux.

Georganopoulos, JF, & Reyes (2010), ApJ, 714, 157

Source Selection

Results

- Combined results for all sources
- Conservative results:
 assumes sources
 have been creating
 TeV γ-rays for 3 years
- Use JF et al. (2010) EBL model
- Low **B** ruled out at 7.2σ
- High **B** not ruled out

Robustness

- Using very low EBL model (Kneiske & Dole 2010):
 - Low B ruled out at 5.5σ
- Excluding variable BL Lacs (1218 and 0229)
 - Low **B** ruled out at 6.4σ
- Using > 1 GeV spectra
 - Low B ruled out at 6.2σ
- Excluding highest two VHE energy bins
 - Low **B** ruled out at 5.9σ
- Using > 1 GeV spectra and Kneiske & Dole (2010) EBL model:
 - Low B ruled out at 2.6σ
 - cf. Arlen et al. (2014)

Results with Less Conservative Assumptions

- Assumes sources have been creating TeV γ-rays for the Hubble time
- Low **B** ruled out at 7.2σ
- High B not ruled out

Implications

Evidence for cosmological generation of the IGMF.

If the IGMF originates from inflationary magnetogenesis, and if the conservative constraints are correct and B > 10⁻¹⁵ G, then this is in conflict with the detection of gravitational waves by BICEP2/Keck Array (Ade et al. 2014). See Fujita & Mukohyama (2012, 2014); Ferreira et al. (2014).

But this claimed detection seems to be in error based on a recent analysis by the BICEP2/Keck and Planck collaborations (Ade et al. 2015).

Summary

- Low **B** values are ruled out at >5σ:
 - for all EBL models tested
 - regardless of whether variable sources were excluded
 - regardless of whether highest VHE points were excluded
 - except for lowest EBL model and > 1 GeV spectra
- Consistent with previous results (e.g. Neronov & Vovk 2010)
- High B values are still unconstrained
- No evidence for cascade in LAT spectrum
- Cosmological models for IGMF generation favored over astrophysical models
- If IGMF originates from inflationary magnetogenesis, some tension with BICEP2/Keck result if B>10⁻¹⁵ G (Fujita & Mukohyama 2012, 2014; Ferreira et al. 2014)

Extra Slides

Intergalactic Magnetic Field

Orange: Allowed by a variety of ways of generating the IGMF.

More interesting ways: phase transitions in the early universe, or inflationary magnetogenesis

Black/gray: ruled out.

Neronov & Vovk (2010, Science, 328, 73)

Source Selection

- Blazars in 3FGL and TeV Cat with published VHE spectra and known redshift
- Sources in 3FGL with significance $< 4.8\sigma$ that it is variable
- Sources with z < 0.3
- Sources with deabsorbed VHE spectra above or near extrapolated LAT spectra
- LAT data analysis:
 - Pass 7 Reprocessed
 - LAT data: August 4, 2008 to June 30, 2014 (~ 6 years)

LAT data analysis

Geometry for Compton-yy Cascade

Apply to 1ES 0229+200 z = 0.1396

Dermer et al. (2011)